
Combination and Interoperation of Logical Systems
Research in Formal Interoperability

Final report for ONR grant NAVY N00014-94-1-0857
06/01/94 - 04/30/99

1 Project Objectives

This project began with the long term objective of being able to hook together reasoning
systems in semantically meaningful and useful ways, where the term reasoning system
covers a wide range of tools including stand-alone theorem provers, decision procedures,
and tools for transforming or translating formal assertions. The problem of combining
and interoperating theorem provers and logical systems provides a very good focus to
fruitfully apply, and to further develop existing formal theories such as: general logics;
rewriting logic; module calculi; and meta architectures for reasoning systems. The theory
of general logics [Mes89] provides rigorous criteria of correctness and semantics for
the activity of "booking proof systems together". Rewriting logic [Mes92, Mes98] is a
logical framework [MOM97], or "universal logic" in which other logics can naturally be
represented by means of maps of logics. The modularity and parameterization facilities of
rewriting logic lead immediately to modularity and parameterization of presentations.

Going beyond reasoners we want to interoperate different formalisms and systems
based on diverse computational models. Thus, this project involved investigation of
both interpretations of the phrase formal interoperability: (i) formal semantics of the
interoperation of components and their combination into complex systems; and (ii) the
interoperation of formal systems and their combined use to specify the many aspects of
complex systems. The research addressed needs for: (i) scientific foundations for sensible,
correct and secure interaction between components; (ii) formalizing different aspects of
complex systems and reasoning across such formalizations; and (iii) correct interoperation
of formal tools such as theorem provers, declarative languages, and analyzers.

By using reflective techniques and taking an even more abstract point of view of module
compositionality in which module composition operators apply to both formal and informal
module descriptions as well as to the software resources that implement the modules, a
module calculus can deal simultaneously with all the aspects of a resource. Such a module
calculus can be of great practical use in the design, development, evolution and reuse of
software systems and can be realized in highly generic tools of wide applicability. The
Maude language and interpreter have been used to implement some of the formal interop-
erability ideas. Maude is a fully reflective and very efficient implementation of rewriting
logic that naturally supports such efforts. Maude executables, its manual, and a collection
of examples and papers are available on the Web frttp: / /maude. csl. sri. com).

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited 19991206 039
DTIC QDALIT7IMWBOTED 4

JAN 29 '99 11:32AM ERA STANFORD-

REPORT DOCUMENTATION PAGE
 -P. 4
form Aaorov»a

OMI *M. 0 '04-0 fM

• -•* ■••e- .^eo»* «•*«*•"»« :»»• :<M* *o* •♦•■•».A^ <MUTUAIO^ i»«***"** I*«<M*M^ *«t» 4«ti«

''"'"i'iii IL««»'"»IO»^C'« ««««no« »-cr«1 iO't4^:MI ««iw^tot. X WX1

1. AGENCY USI OMIT (luv« ofentj 2. REPORT QATI

99 November 29

1. «[PORT TYPE ANO OATSS COVERED

Final Report
«. TJTII ANO SURTtTU

Combination and Interoperation of Logical Systems
Research in Formal Interoperability

nft/m/QA - (U/M/QQ
V FUNDING NUMtERS
C:
ONR N00014-94-1-0857

AUTHOIKS)
John McCarthy/
Carolyn Talcott

7. PERFORMING ORGANIZATION NAMI(S) ANO A0ORESS<ESI

Computer Science Department
353 Serra Mall
Gates Building, 2A
Stanford University
ffanfnrd. HA 94305--902Q

». $W«ÖRWG'MONITO«WG'AGENCY NAMEISI AHO AOOMSWIS)

Administrative Grants Officer
' OFFICE OF NAVAL RESEARCH REGIONAL OFFICE - SEATTLE
1107 NE 45th Street Suite 350
Seattle, WA 98105-4631

HRFORMING ORGANIZATION
REPORT NUMSER

10. SPONSORING' MONITORING
AGCNCr REPORT NUMIER

7V. SUPPLEMENTARY NOTES

Tl». OtSTRltUTlON/AVAJlAilUTY STATEMENT

Approved for public release; distribution unlimited.

12k. DISTRIBUTION COM

fit. AISTRACT (Mtumvfn ZOOwor&l)

This project involved investigation of both interpretations of the phrase formal
interoperability: (i) formal semantics of the interoperation of components and
their combination into complex systems; and (ii) the interoperation of formal
systems and their combined use to specify the many aspects of complex systems,

(i) scientific foundations for sensible, correct and secure interaction

between components;
(ii) formalizing different aspects of complex systems and reasoning across

such formalizations; and
(iii) correct interoperation of formal tools such as theorem provers, declarative

languages, and analyzers.
Progress in several areas of formal interoperability is reported: reasoning
systems, heterogeneous architectures, distributed open systems and the use of

reflective techniques.

U. SUtiECT TERMS

Formal Interoperability, module calculus, reasoning theory,
reflection

17. SECURITY CLASSWCATtO«
Of REPORT

UHCLASSlflED

NSN 7S4O-0I.M0-SSO0

11. SECURITY CLASSIFICATION
OP THIS PAGE

UUCLASSIFIEB

IS. SECURITY CLASSIFICATION
OP AISTRACT
UNCLASSIFIED

1$. NUMMR Of PAGES

1*. PAKE coo«

M. LIMITATION OP AiSTAAti

UL

2 Technical Results

Progress has been made in several areas of formal interoperability: reasoning systems,
heterogeneous architectures, distributed open systems, and the use of reflective tech-
niques. Results are described in the following subsections. In addition we estab-
lished and continue to maintain a mechanized reasoning systems web site that include
a database of existing reasoning systems and other related information. In 1996 we
merged our site with a site maintained at the University of Saarbriiken in Germany. This
resulted in added content and better accessibility. The main page can be accessed at
http: //www-formal.stanford.edu/clt/ARS/ars-db.html.

2.1 Open Mechanized Reasoning Systems

The Open Mechanized Reasoning Systems (OMRS) Framework was developed as a joint
effort between this project and the Mechanized Reasoning Group at IRST (Trento Italy)
and the University of Genova (Genova, Italy). (The web page for the OMRS project is
http: //www.mrg.dist.unige.it/omrs/index.html.)

The notion of an Open Mechanized Reasoning System (OMRS) was introduced [GPT96]
as a framework for specifying mechanized reasoning systems. The long term objective of
the OMRS project is to provide a technology for integrating and interoperating diverse
proof systems with each other and with other software components (for example symbolic
algebra systems, compilers, information systems) to build complex systems from existing
and newly created components in a principled and sound manner, with minimal changes to
the existing modules. An OMRS has three aspects: a reasoning theory specifying the un-
derlying inference system; strategies for controlling inference; and interaction capabilities.

Reasoning theories [GPT96] have several aspects: sequents (assertions), constraint
systems (for expressing and checking applicability conditions), instantiation systems (for
instantiating schematic entities such as sequents and constraints) and rules for deduction.
The semantics of a reasoning theory is given by structures called reasoning structures
- structures that represent proof fragments and that naturally support the process of
constructing a proof, automatically and/or interactively. We have developed a rich variety
of algebraic and categorical structure for reasoning theories and the associated structures,
guided by the analogy to rewriting logic [MT].

Reasoning theories come in several flavors: abstract, nested and equationally presented.
Abstract reasoning theories (Arths) treat sequents, constraints and instantiations axiomat-
ically. Constraint systems form symmetric, strict monoidal categories with weak terminal
objects. Instantiation systems are monoids of instantiation maps and sequent and constraint
systems come equipped with structure preserving actions of the instantiation monoid. Map-
pings between abstract reasoning theories and between the various component systems
turns these collections of structures into categories. Nested reasoning theories (NRThs)
have constraint systems that are presented as (Nested) reasoning theories. Equationally
presented reasoning theories (ERThs), have sequents presented by equational theories. In

an ERTh, the instantiation monoid is generated uniformly by extending the sequent algebra
with meta variables and substitutions - using freeness of the algebra. Each NRTh, and
ERth has an associated underlying ARTh.

To each Arth is associated a set of reasoning structures (proof fragments) and compos-
able reasoning structures. Reasoning structures are associated to NRThs and ERths via the
mapping to Arths. This association is functorial. Composable reasoning structures have
a 2-categorical structure with underlying categorical structure essentially that of constraint
systems. There is an algebra of arrows, analogous to the algebra of proofs in a rewriting
theory, that provides for several dimensions of modularity and notions of composition of
reasoning structures. These algebras provide a basis for specifying inference modules in a
reasoning system. We have discovered a number of connections to Petri nets considered as
special kinds of rewriting theories: the notion of occurrence net has an analog in reason-
ing structures as those structures in which sequent nodes are not shared; and composable
processes of the Petri net theory are analogous to composable reasoning structures. Certain
equations in the algebra of reasoning structures that correspond to the equational theory of
rewriting proof terms, equate graphs that are in general different if the structure of a proof
matters. A similar phenomenon arises axiomatizing the algebra of net computations.

In [GPT94] another algebra of reasoning structures was proposed. That algebra is
based on the operations needed to support dynamic, interactive exploration and proof
construction. It manipulates reasoning structures that may have gaps and hence are not
necessarily derivation structures. Both algebras are important for supporting the design
and interoperation off mechanized reasoning systems.

There is an obvious intuitive analogy between reasoning theories and rewriting logic:
sequents play the role of terms in a rewriting theory; constraints play a role analogous to
conditions in a conditional rewrite rule; reasoning theory rules correspond to the rule part
of a rewriting logic theory; and the algebra of composable reasoning structures corresponds
to the algebra of proof terms that form the initial model of a rewriting theory. This analogy
has been formalized as a mapping of logics from ERThs to a special class of theories of
rewriting logic [MT98].

One of the objectives of our study was to provide a formal notion of modularity and
composition of Reasoning Theories. This has been outlined for ERThs using the notion of
faithful inclusion mapping between ERTHs [CGMT98]. In the process we have defined
a new notion we call 'strong persistence' which characterizes the embedding of the theory
shared by the constraint and sequent systems in a reasoning theory [MT]. Pushouts
preserve strong persistence, thus they can be used to describe the combination of a sequent
algebra and a constraint algebra into a reasoning theory - using the uniform construction
of instantiation monoids as substitution systems.

The reasoning theory framework has been used to analyze the NQTHM prover [CGPT97]
and to develop an modular reconstruction of the high-level structure of the ACL2
prover [Ber97]. The latter augments ACL2 with the ability to construct proofs. In addition
the reasoning theory framework has been used as the basis of an experiment to re-engineer
the integration of the NQTHM linear arithmetic procedure implemented as a re-usable

separate process [AR97]. A formalism for the control component of OMRS was developed
and used to specify the control component of NQTHM [Cog96] The OMRS framework has
been used to build provably correct systems [GPA96], and it has be used as the basis for
integration of the proof systems and symbolic algebra systems [BCGH98].

Important progress has also been made in developing techniques for reusing logics, so
that both formal systems and their computer implementations can be used not only in their
original context, but also across different logics by a process called "borrowing" [CM97a].
In such a process, a map relating part of the logical structures of two logics can be used
to borrow the remaining logical structure from the target logic by a generalized process
of "pulling it back" along the given map. For example, formal reasoning techniques and
system implementations for equational logic can be borrowed in a sound and complete way
to do reasoning in linear logic in an equational style, instead of in the usual sequent style.
General borrowing results as well as the conditions under which those results specialize
to subcases enjoying particularly nice conservation of logical properties have been studied
using the general logics framework. It turns out that these results can be given a particularly
simple and elegant formulation in terms of fibered categories. The constructions are
illustrated with relevant examples that show how the techniques can be applied in a wide
variety of situations.

2.2 Heterogeneous Architectures

A substantial case study showing how rewriting logic Maude can be used to execute
very high level software designs, namely, architectural descriptions, has been carried
out ([CDE+98] (Appendix E). It focuses on a difficult case, namely, heterogeneous
architectures, illustrated by a command-and-control example featuring dataflow, message
passing, and implicit invocation subarchitectures. Using Maude, each of the different
subarchitectures cannot only be executed, but can also be interoperated in the execution
of the resulting overall system.

2.3 Distributed Object-based Open Systems

In addition to investigating the connection between rewriting logic and reasoning theories,
we have been investigating the use of rewriting logic as a semantic framework for open
and highly concurrent systems, including actor systems, and concurrent object-oriented
systems. In [Tal96b] an abstract operational semantic framework, Actor Theories (called
abstract actor structures there) for specifying actor systems was introduced along with
a more abstract trace-like model called interaction semantics. Actor theories can be
thought of as specifying the interface between individual actor programs and the runtime
environment that supports their execution and interaction. This work provides a first
step in the development of a semantics of distributed and interoperable components open
systems. It has already served as the basis for a temporal logic specification formalism
for actor systems [Dua99] and for proving correctness of translations between actor
languages [MT99a].

In [Tal96a] the rewriting logic foundations of actor theories is formalized by defining
the notion of an Actor rewrite theory and developing an algebra of actor system computa-
tions based on this. In [Tal99] the notion of equationally presented actor theories (EPATs)
is defined along with a theory mapping from EPATs to theories of rewriting logic. This
mapping is the basis for an implementation of actor systems in Maude. Extending this
mapping to the infinite fair computations of actor theories adds a new dimension to the
models of rewriting logic theories of concurrent objects.

Rewriting logic directly provides an operational semantic model for actor theories
with rich algebraic structure. Generalizing this structure, a category of algebras of actor
system components has been developed. Actor configurations, computation paths, event-
diagrams (a partial-order of events model), and interaction paths have all been given
actor algebra structure. Morphism of the category provide composable semantics and
means for transferring results between different models [Tal97, Tal98]. A graphical
notation for specifying actor systems has been developed and given semantics using such
morphisms [ST99].

A a general partial order of events model for object-based Maude specifications has
been developed. This model coincides, for finite computations, with the event-diagram
model of actor systems. It provides a semantic basis for interoperation of components
described in languages with different underlying computation models [MT99b].

2.4 Reflection

Progress has been made in both logical reflection and computational reflection.

In collaboration with Manuel Clavel and axiomatization of reflective logics within the
theory of general logics has been developed [CM96a]. The key concept is that of a
universal theory which can simulate all the unitary theories in a given class of theories.
This concept has many important applications, first of all to the rigorous the design of
reflective declarative languages and to modularity and metaprogramming methodology.
Another important application is a new declarative approach to deductive strategies in
declarative languages and theorem-provers [CM97b]. Up to now, strategies have usually
been defined by some kind of tactical language separated for the underlying logic. What
reflection permits is to make strategies internal to the logic whose deductions they control.
This can be achieved in an elegant way using reflection, and has been already illustrated in
practice for the Maude rewriting logic language [CM96b, Oa98]. An extensible module
algebra with powerful composition operations has been designed and implemented using
reflective techniques in the Full Maude language [Dur99]. This is a first step towards
developing a logic-independent generic module algebra applicable to a wide range of
formal notations [DM98].

Two reflective architectures for actor computation have been used to provide a basis
for defining and reasoning about composable services in dynamic adaptable distributed
systems: the onion skin and the two-level actor model. The onion skin or layered
architecture aims at modular specification of interaction policies for components of

distributed systems. It provides a simple means of structuring interaction policies in layers
and allows for policy enforcers to be dynamically installed and to cleanly disappear when
no longer needed. The reflective model underlying the onion skin architecture provides
a means of modifying communication and state of actors on an individual basis. In this
model each actor has a single meta-actor that can observe and modify its behavior. The
default meta-actor implements the standard semantics. Behavior is modified by explicitly
installing a meta-actor. Since the result of installing a meta-actor is again an actor, this
process can be repeated indefinitely. This allows different protocols for fault-tolerance,
security, reliability, quality of service, and other policies to be composed and modified
dynamically as the system runs and new needs arise by adding new meta-levels. It
has been used to support a number of high-level declarative programming abstractions
such as synchronizers, activators, real-time synchronizers, actor spaces, and protocols
that abstract over interaction patterns. We have defined an executable rewriting logic
semantics for distributed object-oriented systems, based on the onion skin model, that
explicitly addresses the reflective properties that are essential for having a truly modular
notion of communication service. This semantics has been used in a case study treating
communication services such as fault-tolerance, encryption and authentication [DMT99].

The two level actor model (TLAM) provides mechanisms for describing distributed
system services built from services local to a node. Here each node has a group of base-
level (application) actors and a group of meta-level actors that observe and control the
base-level behavior. Meta-level actors from different nodes in a network interact to provide
distributed systemwide services. This model has been used to formalize and reason about a
distributed garbage collection algorithm [VAT92] and the safe composition of system-level
activities such as remote creation, migration, and recording of global snapshots of system
properties such as accessibility relation between actors [VT93, VT95]. It has also been
used to model and reason about an architecture for quality-of-service-based multimedia
services [Ven98, VAT99].

References

[AR97] A. Armando and S. Ranise. From integrated reasoning specialists to "plug-
and-play" reasoning components. Technical Report DIST Technical Report
97-0049, University of Genova, Italy, 1997.

[BCGH98] P.G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and
combination of theorem provers and computer algebra systems, submitted for
publication, 1998.

[Ber97] P. G. Bertoli. Using OMRS in Practice: A Case Study with ACL2. PhD thesis,
University of Rome 3,1997.

[CDE+98] M. Clavel, F. Durän, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and programming in rewriting logic, 1998.
URL: http://maude.csl.sri.com.

[CGMT98] A. Coglio, F. Giunchiglia, J. Meseguer, and C. Talcott. Composing and
controlling deduction in reasoning theories using mappings. Technical Report
DIST and IRST Technical Report, IRST, Trento Italy and University of
Genova, Italy, 1998. submitted for publication.

[CGPT97] A. Coglio, F. Giunchiglia, P. Pecchiari, and C. Talcott. A logic level
specification of the nqthm simplification process. Technical report, IRST,
University of Genova, Stanford University, 1997.

[Cla98] Manuel Clavel. Reflection in General Logics, Rewriting Logic, and Maude.
PhD thesis, University of Navarre, 1998.

[CM96a] M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In
G. Kiczales, editor, Reflection'96, pages 263-288. Xerox PARC, 1996.

[CM96b] M. Clavel and J. Meseguer. Reflection in rewriting logic. In
Rewriting Logic Workshop'96, number 4 in Electronic Notes
in Theoretical Computer Science. Elsevier, 1996. URL:
http: //www. elsevier.nl/locate/entcs/volume4 .html.

[CM97a] M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical
structure along maps). Theoretical Computer Science, 173:311-347,1997.

[CM97b] M. Clavel and J. Meseguer. Internal strategies in a reflective logic. In Proc.
Workshop on Strategies in Automated Deduction, CADE-14, 1997.

[Cog96] A. Coglio. The control component of OMRS. Master's thesis, University of
Genova, Italy, 1996.

[DM98] F. Duran and J. Meseguer. Structured theories and institutions. In Category
Theory in Computer Science, Electronic Notes in Theoretical Computer
Science. Elsevier, 1998.

[DMT99] G. Denker, J. Meseguer, and C. Talcott. Rewriting Semantics of Distributed
Meta Objects and Composable Communication Services, 1999. submitted.

[Dua99] C. H. C. Duarte. Proof-theoretic Foundations for the Design of Extensible
Software Systems. PhD thesis, Imperial College, University of London, 1999.

[Dur99] Francisco Duran. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, University of Malaga, 1999.

[GPA96] F. Giunchiglia, P. Pecchiari, and A. Armando. Towards provably correct
system synthesis and extension. Future Generation Computer Systems,
12(458): 123-137,1996.

[GPT94] F. Giunchiglia, P. Pecchiari, and C. L. Talcott. Reasoning theories: Towards an
architecture for open mechanized reasoning systems. Technical Report 9409-
15, IRST, November 1994. Also appears as Stanford University Computer
Science Department Technical Note STAN-CS-94-TN-15.

[GPT96] F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning theories: Towards
an architecture for open mechanized reasoning systems. In Workshop on
Frontiers of Combining Systems FROCOS'96, 1996.

[Mes89] J. Meseguer. General logics. In Logic Colloquium 87. North-Holland, 1989.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155,1992.

[Mes98] Jose" Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, NATO Advanced Study
Institute, Marktoberdorf, Germany, July 29 - August 6,1997. Springer-Verlag,
1998.

[MOM97] Narciso Marti-Oliet and Jose Meseguer. Rewriting logic as a logical and
semantic framework. In D. Gabbay, editor, Handbook of Philosophical Logic.
Kluwer Academic Publishers, 1997.

[MT]

[MT98]

[MT99a]

[MT99b]

[ST99]

[Tal96a]

[Tal96b]

J. Meseguer and C. Talcott.
preparation).

Reasoning theories and rewriting logic, (in

J. Meseguer and C. Talcott. Mapping OMRS to Rewriting Logic.
In C. Kirchner and H. Kirchner, editors, 2nd International Work-
shop on Rewriting Logic and its Applications, WRLA'98, volume 15
of Electronic Notes in Theoretical Computer Science, 1998. URL:
http: / /www. elsevier. nl/locate/entcs/volumel5.html.

I. A. Mason and C. L. Talcott. Actor languages: Their syntax, semantics,
translation, and equivalence. Theoretical Computer Science, 228(1), 1999.

J. Meseguer and C. Talcott. A Partial Order Event Model for Concurrent
Objects. In Proceedings of CONCUR'99: Concurency Theory, volume 1664
of Lecture Notes in Computer Science, pages 415-430,1999.

S. F. Smith and C. L. Talcott. Modular reasoning for actor specification
diagrams. In P. Ciancariani, A. Fantechi, and R. Gorrieri, editors, Formal
Methods for Open Object-based Distributed Systems, pages 313-330. Kluwer,
1999.

C. L. Talcott. An actor rewriting theory. In J. Meseguer, editor, Proc. 1st Intl.
Workshop on Rewriting Logic and its Applications, volume 4 of Electronic
Notes in Theoretical Computer Science, pages 360-383. North Holland, 1996.
http: //wwwl .elsevier .nl/mcs/tcs/pc/volume4 .htm.

C. L. Talcott. Interaction semantics for components of distributed systems.
In E. Najm and J-B. Stefani, editors, 1st IFIP Workshop on Formal Methods
for Open Object-based Distributed Systems, FMOODS'96,1996. Proceedings
published in 1997 by Chapman & Hall.

8

[Tal97]

[Tal98]

[Tal99]

[VAT92]

[VAT99]

[Ven98]

[VT93]

[VT95]

C. L. Talcott. Composable semantic models for actor theories. In M. Abadi
and T. Ito, editors, Theoretical Aspects of Computer Science, number 1281 in
Lecture Notes in Computer Science, pages 321-364. Springer-Verlag, 1997.

C. L. Talcott. Composable semantic models for actor theories. Higher-Order
and Symbolic Computation, 11(3), 1998.

C. L. Talcott.
publication.

Actor theories in rewriting logic, 1999. submitted for

N. Venkatasubramanian, G. Agha, and C. L. Talcott. Scalable distributed
garbage collection for systems of active objects. In International Workshop
on Memory Management, IWMM92, Saint-Malo, LNCS, 1992.

N. Venkatasubramanian, G. Agha, and C. L. Talcott. Specifying composable
services for QoS-based distributed resource management, 1999. submitted.

N. Venkatasubramanian. Resource Management in Open Distributed Systems
with Applications to Multimedia. PhD thesis, University of Illinois, Urbana-
Champaign, 1998.

N. Venkatasubramanian and C. L. Talcott. A metaarchitecture for distributed
resource management. In Hawaii International Conference on System Sci-
ences, HICSS-26, January 1993.

N. Venkatasubramanian and C. L. Talcott. Reasoning about Meta Level Activ-
ities in Open Distributed Systems. In Principles of Distributed Computation
(PODC '95), pages 144-153. ACM, 1995.

